If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-25x-9=0
a = 9; b = -25; c = -9;
Δ = b2-4ac
Δ = -252-4·9·(-9)
Δ = 949
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-\sqrt{949}}{2*9}=\frac{25-\sqrt{949}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+\sqrt{949}}{2*9}=\frac{25+\sqrt{949}}{18} $
| 2.5x+2=1.5 | | (5/2)x+2=3/2 | | 5x-2(2x+1)=6 | | 4p^2-30p+11=0 | | (3/2)x+3=4 | | 5x+35=3x+23 | | x^2-1.25+0.25=0 | | 9x+27=3x+33 | | 2(2w+4)=8(w+6)w= | | 3-5x-2(10-x)=1 | | 2x=x+52x=x+5. | | -15+y=2(4y-5)+30 | | 3(a+3)=33 | | 3(a+3)=33 | | 8x+7=3x-9 | | 6x=20-2x | | z(1+20/7)=540 | | 5(30-k)=105 | | 5(30-k)=105 | | 5(4x+7)=3(2x+6) | | 2(j+7=44 | | 2(j+7)=44 | | 8/5+2a/3=128/5 | | 88/5+2a/3=128/5 | | 1/3(9-2x)=-4 | | 4x2-13x+13=4x+9 | | -(5-x)^2=0 | | 5,2x/0,7=7,7 | | 6x2+25x-9=0 | | 8x3-14=10 | | X+2x+(10-2x)+(2x+1)=23 | | X2+13x+17=3x+1 |